Kamis, 30 Juni 2016

Akses ADC CodevisionAVR


Salam elektro,

TOLONG BACA DENGAN DETAIL !

Siapkan alat dan bahan :
  • Minimum sytem atmega 8
  • Variable resistor 10k (3)
  • Lcd 16x2 
  • Kabel jumper disesuaikan
  • Breadboard
  • Kabel usb
  • Laptop
  • Software codevision avr 
  • Download simulasi proteus
1. Sambungkan semua komponen sesuai dengan gambar atau bisa kalian coba dulu pada software proteus isis

CATATAN !
a. Pastikan setting software sudah sesuai
b. Pastikan pin AREF dan VCC sudah terhubung 
c. Pastikan settingan crystal menggunakan 12 Mhz

2. Buat program seperti dibawah ini pada software codevisionavr,apabila ada yang belum tau cara menggunakan software codevision avr bisa baca disini 

Sebelum membuat program,kalian setting dulu pada codevision avr dan proteus seperti ini




/*******************************************************
This program was created by the
CodeWizardAVR V3.12 Advanced
Automatic Program Generator
© Copyright 1998-2014 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com

Project : akses ADC 8 Bit
Version : 
Date    : 6/30/2016
Author  : 
Company : 
Comments: 


Chip type               : ATmega8
Program type            : Application
AVR Core Clock frequency: 12.000000 MHz
Memory model            : Small
External RAM size       : 0
Data Stack size         : 256
*******************************************************/

#include <mega8.h>
#include <delay.h>
#include <stdio.h>

// Alphanumeric LCD functions
#include <alcd.h>

// Declare your global variables here

int data_adc_1;
int data_adc_2;

int result_1;
int result_2;

char buffer_1[20];
char buffer_2[20];

// Voltage Reference: AREF pin
#define ADC_VREF_TYPE ((0<<REFS1) | (0<<REFS0) | (1<<ADLAR))

// Read the 8 most significant bits
// of the AD conversion result
unsigned char read_adc(unsigned char adc_input)
{
ADMUX=adc_input | ADC_VREF_TYPE;
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=(1<<ADSC);
// Wait for the AD conversion to complete
while ((ADCSRA & (1<<ADIF))==0);
ADCSRA|=(1<<ADIF);
return ADCH;
}

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port B initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In 
DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T 
PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization
// Function: Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In 
DDRC=(0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);
// State: Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T 
PORTC=(0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In 
DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) | (0<<DDD1) | (0<<DDD0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T 
PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
TCCR0=(0<<CS02) | (0<<CS01) | (0<<CS00);
TCNT0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) | (0<<CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0<<AS2;
TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | (0<<CS21) | (0<<CS20);
TCNT2=0x00;
OCR2=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (0<<TOIE1) | (0<<TOIE0);

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);

// USART initialization
// USART disabled
UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | (0<<UCSZ2) | (0<<RXB8) | (0<<TXB8);

// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AIN0 pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0);

// ADC initialization
// ADC Clock frequency: 750.000 kHz
// ADC Voltage Reference: AREF pin
// Only the 8 most significant bits of
// the AD conversion result are used
ADMUX=ADC_VREF_TYPE;
ADCSRA=(1<<ADEN) | (0<<ADSC) | (0<<ADFR) | (0<<ADIF) | (0<<ADIE) | (1<<ADPS2) | (0<<ADPS1) | (0<<ADPS0);
SFIOR=(0<<ACME);

// SPI initialization
// SPI disabled
SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);

// TWI initialization
// TWI disabled
TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

// Alphanumeric LCD initialization
// Connections are specified in the
// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu:
// RS - PORTD Bit 0
// RD - PORTD Bit 1
// EN - PORTD Bit 2
// D4 - PORTD Bit 4
// D5 - PORTD Bit 5
// D6 - PORTD Bit 6
// D7 - PORTD Bit 7
// Characters/line: 16
lcd_init(16);
lcd_gotoxy(0,0);
lcd_putsf("aruselektronika");
lcd_gotoxy(0,1);
lcd_putsf(".blogspot.com");
delay_ms(1000);
lcd_clear();

while (1)
      {
      // Place your code here
      data_adc_1  = read_adc(0);
      data_adc_2  = read_adc(1);

      result_1 = data_adc_1 * 5.0;
      result_2 = data_adc_2 * 5.0;
            
      sprintf(buffer_1,"ADC 0 = %d",result_1);
      sprintf(buffer_2,"ADC 1 = %d",result_2); 
      
      lcd_gotoxy(0,0);
      lcd_puts(buffer_1);
      lcd_gotoxy(0,1);
      lcd_puts(buffer_2); 
      delay_ms(100);
      }
}
3. Compile project pada software cvavr,apabila tidak terjadi error lanjut dengan proses upload atau build all project files 

4. Download program .hex (hasil compile) pada minimum sistem menggunakan usb asp baca disini,bila menggunakan simulasi tinggal kalian masukan file .hexnya ke dalam ic baca disini 

Instruction 
Jika kalian membuatnya pada simulasi,kalian coba run kemudian kalian putar POT-HG (variable resistor) pada simulasi lihat data yang akan tampil pada LCD 

Development
bisa kalian kembangkan,contohnya membaca sensor suhu dengan ADC 

Share:

0 comments:

Posting Komentar

Copyright © FILAB | Powered by FILAB
Design by Fickry Muhammad | Technology by Filab.id